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A procedure of analyzing the stability of a null-sclution
of a system of n + k ordinary differential equations, applicable in:
doubtful cases, 1s considered.

This procedure consists in the study of the stability of the null-
solution separately for k and for n equations resulting from the initial
system.

Let us consider the system
dy
= h@ e B g B ) =)

dz, N (1)
-a—t-’—=g,-(3:1,...,xn,yl,...,yk,t) G=1,...,m

We assume that the functions f; and gj are given continuous functions
in the region |X | < H, |[Y| < H, t> 0.

Furthermore we assume
fs=0 for |Y|=0
g;i=0 for |X|=|Y|=0 (s=1,....kj=1,...,n)

Definition 1. A null-solution of the system (1) is called stable
accordin§ to Liapunov if for any ¢ > 0 we can find 8 {¢) > 0 such that
for | X(©J] < &, Y10} < & we have | X(¢,X(0),¥(0) ¢ ) < ¢, |¥(e,x(0),
Y“)JJ}<6 for 0< t, < t.

Here X(t,X(o),Y{O),tO), Y(t,X(O),Y(O),tO) indicate the set of
functions Xps vess Zpy Yy weer Yh representing the solution of the
system (1), subjected to the conditions

Zi= ;0 y;=y;® for t=t, (i=4%,....m i=1,...,k)

If a null-solution of the system (1) is stable and X(t,X(°),Y(°),to)
—0, Y(t,X(O),Y(O),to)'—*O as t—*+ o« , then such a null-solution is
called asymptotically stable. If in the first group of equations of
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system (1) the quantities x,, ..., x, are replaced by the continuously
differentiable functions x J(t), +e., x,(t), which are given for t > 0,
such that |X (t)] < H, then we obtain a system of k differential equa-
tions of the type

d;
_%Lw stz (@), 2 () 9O ) 3)

possessing a null-solution,

Definition 2. A null-solution of system (3) is called strongly stable,
if we can find a number H, > 0 such that for every 51 > 0 there exists a
8, > 0 characterized by {Yo(t Y(O),tol <e, for 0 t ;< t and |Y °)t<8
for any continuously differentiable functlons x (t) ey %, (t) given
for t » 0 and [X | < H,. If, in addition, Y°—>0 as t—+ o, then the
null-selution of system (2) will be called strongly asymptotically
stable,

let us introduce a function
Wtz oo, T Yio - ooy Yi)
Definition 3. We shall say that the function W(t,xl, very Xp
Yy» «e+s Yg) 1is "strictly negative-definite® with respect to X if it is
possible to find a function
Pe{Xys ooy dn) >0 for X=£0(s=1....,k)

such that the function W(t,x,,..., %, y,(x;, ..oy 2,) oo, Yplxg,... 1x,))
will be negative-definite for any choice of continuous functions

¥ (xl, ..+, %) satisfying the condition
bys(@yy - o) | <los @y, oo oh@n) (s=1,0..,k)
For example, the function W=~ x2 + y sin t will he strictly

negative-definite. Here it is possible to assume ¢ = % x?
Theorem 1. 1f:

(1) A null-solution of system (2) is strongly stable (strongly
asymptotically stable),

(2} there exists a continuously differentiable positive-definite
function V{t,x,., ..., xn), uniformly continuous with respect to t for
X=0, V(t,X)—0 as X—>0 uniformly for t » 0

(3) the function

ﬁV v
I/V(tyxly'a-yxn:y1’~~~syk) ’}"2} gJ(t'XY)
Fum}
is "strictly negative-definite" with respect to X, then the null-solution
of the system (1) will also be stable (asymptotically stable).

Proof. According'to condition (2),there exists a number h > 0 and
h < H, such that for e > 0
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infV(t, X)=m(e)>0 (20, e<<|X|<H

Let us take a certain number ¢ > 0, ¢ > H and choose a positive
number m < m, (¢).

According to condition 2 of Theorem 1 there exists a number A < ¢
such that the function V(¢,X) < m for [X| <A, t » 0.

On the strength of condition (3) there exists a number ¢, ¢ such
that for |Y | < e, we shall have W(¢,X,Y) < 0 for ¢t > 0 and A < |X | <

On the strength of condition (1) for a number ¢, > 0 it is poss1ble
to find a number 3, > 0, connected with €, by the relation indicated in
Definition 2.

Let us assume 8 = min (A, 8,) < e. We show that for | X °)| <3,
IY(O | < & inequality (2) is fulfilled.

Assume that this is not true. Then it is possible to find a number T
such that

[X (8, X, Y9, n)|<e, t€0t, T1, | X(T, X, Y9, to)| =
There follows from Definition 2:
1Y (¢, XO, Y9, 1)) <e;<<e for tE€[ty, T}

since the set of the functions Y(t,Xlo),Y(o),t ) can be assumed to be
the solution of system (3) in the time interval [¢ ,T], in which
functions xj(t,X(o , ),t ) are selected for the functlon % (t).

Let us designate by V(t) the value of the function V(¢, X) on the
integral line under the study. Clearly V(t;) < m but V(T) > m. Function
V(t) is continuously differentiable, therefore there exists a number t
such that V(¢;) = m and V(¢t) > m for t, < t < T. Then [dV / dt ],

> 0 for ¢t = t,, when inequality A ¢ IXj(t X(o) Y(O),t ) € € is g
satlsfled and consequently [aV / dt lt = ¢ <O 'Ih1s contradiction
proves inequality (2), and then there follE)ws from the Condition (1) and
Definition 2,

2

1Y, X, Y9, 1) | <ey<e for t>t,>0

Thus, the null-solution of the system (1) is stable.
If the null-solution of system (3) is asymptotically stable, then
Y, X979, t)—>0 as t->+ o0
Let | X(t, xto) ylo), t)| >a> 0 for tast Then there exists a
number r > t, such that W(e,X(¢,X°,Y°,t,), Y%t x, v ),to)) <-0<0

for t » r, therefore V(¢t) ¢ V(r) - o (t ~7r) for t 3 r, which is
impossible.

Hence X(t,X(O),Y(o),to)_"O for t=—*+ oo,
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Theorem 2. 1f there exists a non-empty set of §01nts B of the (k+ 1)
dimensional space of points (¢, Yy ) which possesses the

properties:
(1) inf y =0 (s=1,... %), t,>0
B
(2) For a certaine > 0 and any § > 0 there can be found a point
(t,,7,9), ...,y oD e B such that | Y(°)] < & and | Y(¢,V{0) ¢ )| < e
does not occur for every t » t  for all possible choices of contlnuously

differentiable functions x, (t) sz (1), X)) < H, where H, < ¢
is a certain positive number, then the null solution of system (l) 1s
stable.

Proof. Suppose the opposite is true. Then for a number H, according
to Definition 1, a number & > 0 can be found such that

X (t, X, 79, t,)| < H,, 1Y (t, X, Y, to) | < H, (4)

for t 3 ¢ for all X{0) and ¥(®) such that [X° | < &, |¥° | < 8. Let us
take a p01nt (t,, yl( Y, ., yz(o)) ¢ B.

The functions y(t, xl{o), vees xn(o), y(O), cen, , )may be
considered to be the solution of the system (3) in whlch % (t
x,(t) are replaced by the functions{y,), ..., yk( o) oty) but then,
accordlng to condltlon (2) of the theorem, 1nequa11ty (3) cannot take
place for all t >

The obtained contradiction shows that the null-solution of the system
(1) is unstable. We note a series of special cases of the theorem
formulated above.

Theorem 3. If:

(1) A null-solution of the system (3) is strongly stable (strongly
asymptotically stable),
(2) a null-solution of the system
dx,

"Ef—:gj(taxh'---1$’ny0:"'50) (f.zi""’n) (5)

is uniformly asymptotically stable,
(3) functions g;(tyx,, «ov) Zpy Yyv oeey yk) are continuously differ-
entiable with respect to all their arguments in thel domain

120, | X|KH, |[YISKH
(4) functions

Byl et D g, X, Y) =gl X, 0)

1

agj(terY) ]'==1,‘...,n
dt i=1,.
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are bounded with respect to t uniformly in the domain [X | < H, |Y | < H,
t > 0, then the null-solution of the system (1) also will be stable
(asymptotically stable).

Proof. For the satisfaction of conditions (2), (3) and (4) of the
system (5) there exists a Liapunov function V(t,z,, ..., z;). It is easy
to verify that the function

n
ar v
Wit X,Y) =5+ 2 3-8

i=1
is in this case strictly negative-definite; therefore in satisfying con-

ditions (2), (3) and (4), conditions (2) and (3) of Theorem 1 are
satisfied, which completes the proof of the present theorem.

Remarks. The conditions (2), (3) and (4) of Theorem 3 can be made
weaker by using the result obtained in reference [2 ].

Theorem 4. If there exists a certain number ¢ > 0 such that inequality
[V(¢,x(0),¥{0) ¢ | <'¢ is violated for all ¢ t, » 0, and Y1°) £ 0 is
sufficiently small for any choice of the continuously differentiable
functions

xi(t) (j“':i!"-’n): iX(t)t<HBs t>01 H2>O

then the null-solution of the system (1) is unstable. Here, as above,
Y(t,Y(o},t ) denotes the set of functions y,, which represent a solution
of the system (2) possessing the property y, = y '°/ for t = t_.

Proof. Consider a domain t 3 0, |Y| < €. It is easy to see that this
domain possesses all properties of domain B, formulated in Theorem 2.
Then, according to Theorem 2, the null-solution of system (1) is un-
stable. We note that the first such method of analyzing the problem of
the stability of a null-solution of the system of differential equations
in doubtful cases was applied by Liapunov, in reference {3 ].

The same method was developed by 1.G. Malkin in reference [4 ] from
which the method of proof of Theorem (1) is taken.
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