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A-procedure of analyzing the stability of a null-solution 

of a system of R + k ordinary differential equations, applicable in 

doubtful cases, is considered. 

This procedure consists in the study of the stability of the null- 

solution separately for k and for n equations resulting from the initial 

system. 

Let us consider the system 

% -=fs(Zlr.*.,~~,y~t.-*r~ktt) dt (s=1 I..., k) 

dxj (1) 
- = gj (% . . - , %I, &, . * . , yrcr q dt (i = I, * . * , n) 

We assume that the functions fS and gj are given continuous functions 

intheregionlXj cH, IYl <H, t>O, 

Furthermore we assume 

fs-0 for IY!=0 

gj=O for jXi=[Yl=O (s---i ,..., k;j=l,..., n) 

Definition 2. A null-solution of the system (1) is called stable 

accordi 

for IX’” 7 
to Liapunov if for any c > 0 we can find 6 fr 1 > 0 such that 

1 < 6, 1 Y(O)1 < 8 we have lX(t,X(“),Y(o),to)\ < c, IY(t,X(‘), 

Y(O),t,l/ < f for 04 to 4 t. 

Iiere X(t,X(‘), Y(O) ,tol, Yt~,X(‘),Y(‘),to) indicate the set of 

functions XI* . . . . %,, yl, . . . . yk representing the solution of the 

system (11, subjected to the conditions 

Q = Zi”). yj = yj 
(0) fox t 1= to (i=$,..., n; i = 1, . . . . k) 

If a null-solution of the system (1) is stable andX(t,X(“),Y(o),to) 

-0, Y(t,X(“~,Y(o),to)+O as t-+-k 00, then such a null-solution is 

called asymptotically stable. If in the first group of equations of 
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system (1) the quantities x 
differentiable functions r1 t 

, l .*, 
t), 

xn are replaced by the continuously 
..*, x,,(t), which are given for t ) 0, 

such that IX (t)] <Ii, then we obtain a system of k differential equa- 
tions of the type 

possessing a null-solution. 

Definition 2. A null-solution of system (3) is called strongly stable, 
if we can find a number H, > 0 such that for every e1 > 0 there exists a 
6, > 0 characterized by fP(t,Y('),t,[ < f1 for O,< to Q t and !Y(')i<S, 
for any continuously differentiable functions x (t), . . . . x,(t) given 

for t>,O and\Xj <H,. If, in addition, Y'+ as t++ 00 , then the b 

null-solution of system (2) will be called strongly asymptotically 
stable, 

let us introduce a function 

w(t, x1, . . . , z,. y1, . . . , $!k) 

Definition 3. We shall say that the function W(t,xl, . . . . %a8 

y11 .*., yk) is "strictly negative-definitel with respect to X if it is 
possible to find a function 

y,(zr, f * * I Ic,)>O for .T%#O((S=Zf....,k) 

such that the function Wf t,zl. ..‘, %’ Yl (n, t et., x,1 .‘., Y&,-J,)) 
will be negative-definite for any choice of continuous functions 

Y, (x, t .*., n,) satisfying the condition 

j~S(21,...1 5,)j<cps(sl,...4k) @= I,..., k) 

For example, the function W= - x2 + y sin t will be strictly 
negative-definite. Here it is possible to assmne $J = % z* 

Theorem I. If: 

(1) A null-solution of system (2) is strongly stable (strongly 
asymptotically stable), 

(2) there exists a continuously differentiable positive-definite 
function V(t,x x 1, uniformly continuous with respect to t for 
X = 0, V(t,X)~O’Hs’X~O uniformly for t > 0 

(3) the function 11 

l,V (L? 21% * * . , z,, 91, . . . , yk) = -g -i_ z -g-gj (t, x, Y) 
j”‘1 3 

is S strictly negative-definite * with respect to X, then the null-solution 
of the system (I) will also be stable (asymptotically stable). 

Proof. According'to condition (Z),there exists a number h > 0 and 
h < Hi such that for t > 0 
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inf V(t, X) = m,(s)>0 (t>/o, s<IXI-sH) 

Let us take a certain number c > 0, c > H and choose a positive 
number m < m,(c). 

According to condition 2 of ‘Iheorem 1 there exists a number X < < 
such that the function V(t,X) < m for (X 1 < A, t > 0. 

On the strength of condition (3) there exists a number c1 4 6 such 
that for 1 Y 1 < E 1 we shall have W(t,X,Y) < 0 for t > 0 and Xc IX 1 4 6. 

Ch the strength of condition (1) for a number c 1 > 0 it is possible 
to find a number 6, > 0, connected with c1 by the relation indicated in 
Definition 2. 

Let us assume 8 = min (A, 6,) < 6. We show that for IX(O)( < 6, 
I Y(O)\ < 6 inequality (2) is fulfilled. 

Assume that this is not true. ‘Ihen it is possible to find a number T 
such that 

1 x (t, x(O), Y(O), 4)) 1 <E, t 6 [t@, T], (X (T, x(O), Y(O), to) 1 = E 

There follows from Definition 2: 

1 Y (t, x(O), Y(O), tn) 1 < El< a for t t? [to, T] 

since the set of the functions Y(t,X(OJ,Y(‘), t ) can be assumed to be 
the solution of system (3) in the time interval [ t,,T 1 , in which 
functions xi(t,X(‘),Y(‘),t,) are selected for the function “j(t). 

Let us designate by V(t) the value of the function V(t,X) on the 
integral line under the study. Clearly V( to) < m but UT) > m. Function 
V(t) is continuously differentiable, therefore there exists a number t, 

T. ‘ken [ dV / dt 1 t _ tlL 
),Y(‘),t_)l 4 6 is 

such that V(t,) = m-and V(t) > m for t < t $ 
>/O for t- t:,, when inequality A ,C IXtt,,X(’ 
satisfied and consequently 1 dV / dt I t = t < 
proves inequality (2), and then there follbws 
Definition 2, 

0. lhis”cbntradiction 
from the Condition (1) and 

IY(t. X(O), Y’a’, to)(<sl<s for t>,&>,O , 

Thus, the null-solution of the system (1) is stable. 

If the null-solution of system (3) is asymptotically stable, then 

Y It., X(O), PO’, to)-_,0 as t *+ oo 

Let IX(t,X(“),fioj,tJ I > a > 0 for t as t . Then there exists a 
number r > t such that W(t,X(t,P,P t ), Y?t,X’,Y(‘),to)) < - u < 0 
fort&r, tEereforeV(t)&V(r)-a itO- for t > r , which is 
impossible. 

Hence X(t,X(O),Y(O) , to)-*0 for t-)+ 00. 
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Theorem 2. If there exists a non-empty set of oints B of the fk + 1) 
dimensional space of points (to, y1 (0) . . . . , ykcop) which possesses the 
properties: 

(1) inf y,(O) =O (s=l,... 
B 

k), to>/0 

(2) For a certain E > 0 and any 8 > 0 there can be ‘found a point 
~to,y,(o) f . ..) yp) 6 B such that IY(‘)l < 6 and (Y(t,Yf”),t,)( < 6 
does not occur for every t 2 to for all possible choices of continuously 
differentiable functions x,(t), . . . . xnft), j.X(tlj ( H2 where Hz < t 
is a certain positive number, then the null-solution of’system Ilf is 
stable. 

Proof. Suppose the opposite is true. Then for a number Hz according 
to Definition 1, a number F > 0 can be found such that 

lx(t, x (O), Y(O), to) / <Hz, IY (t, x (O), Y(O), t,) / <H, (4) 

for t >, tp for all .X(O) and Y(O) such that IAe 1 < 6, IF 1 < 6. Let us 
take a point (to, y,(O), . . . , y2(0)) t B. 

‘Ihe. fuWtiOnS Ys(t, x1(‘), . . . , zn(‘), r(O), ,.‘, yk(‘), t )may be 
considered to be the solution of the system (31 in which xl(t 3 , .a., 
xnf t) are replaced by the functions b,), . . . , ykio’ , to) but then, 
according to condition (21 of the theorem, inequality (3) cannot take 
place for all t >/ to . 

The obtained contradiction shows that the null-solution of the system 
(1) is unstable. We note a series of special cases of the theorem 
formulated above. 

Theorem 3. If: 

(1) A null-solution of the system (31 is strongly stable (strongly 
asymptotically stable), 

(21 a null-solution of the system 

dxj 
- = gj (t, 21, . s . 7 X*:,, 0, * a * ) 0) 

dt 
(i= 1,. . . , n) (5) 

is uniformly asymptotically stable, 
(3) functions gj(tixi, . . . , xn* Y1, *a’, yk) are continuously differ- 

entiable with respect to all their arguments in theldoma’in 

t>o, IxI<H, (YI\<H 

(41 functions 

agj ftl xT yl j=l,...,TZ 

dt i= )..., 1 n 
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are bounded with respect to t 
t > 0, then the null-solution 
(asymptotically stable). 
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uniformlyinthedomainfX1 <H, lYl<e, 
of the system (1) also will be stable 

Proof. For the satisfaction of conditions (21, (3) and (4) of the 
system (5) there exists a Liapunov function V(t,rl, . . . , x,1. It is easy 
to verify that the function 

is in this case strictly negative-definite; therefore in satisfying con- 
ditions (21, (3) and (41, conditions (2) and (3) of Theorem 1 are 
satisfied, which completes the proof of the present theorem. 

Remarks. The conditions (21, (3) and (4) of Theorem 3 can be made 
weaker by using the result obtained in reference [2 1. 

Theorem 4. If there exists a certain nmber c > 0 such that inequality 
1 v(t,X(“),Y(o), toI < c is violated for all t. > to >/ 0, and Y(O) f 0 is 
sufficiently small for any choice of the continuously differentiable 
functions 

Xj tt) (i = I, * . * , n), I x (4 I < H,* t>o, Hz>0 

then the null-solution of the system (11 is unstable. Here, as above, 
Yft,Yf’f , to) denotes the set of functions yS, which represent a solution 
of the system (2) possessing the property yS = yS (O) for t = to. 

Proof. Consider a domain t & 0, (Y 1 6 c. It is easy to see that this 
domain possesses all properties of domain B, formulated in Theorem 2. 
Then, according to lheorem 2, the null-solution of system (11 is un- 
stable. We note that the first such method of analyzing the problem of 
the stability of a null-solution of the system of differential equations 
in doubtful cases was applied by Liapuuov, in reference [ 3 I. 

l’he same method was developed by I.G. Malkin in reference [ 4 f from 
which the method of proof of ‘lheorem (1) is taken. 
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